Springer Handbook of Robotics (eBook)

eBook Download: PDF
2016 | 2. Auflage
LXXVI, 2227 Seiten
Springer International Publishing (Verlag)
978-3-319-32552-1 (ISBN)

Lese- und Medienproben

Springer Handbook of Robotics -
Systemvoraussetzungen
341,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The second edition of this handbook provides a state-of-the-art cover view on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the »Springer Handbook of Robotics«.

The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization's Award for Engineering & Technology.

The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook's team.

A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. 

Bruno Siciliano received his Doctorate degree in Electronic Engineering from the University of Naples, Italy, in 1987. He is Professor of Control and Robotics at University of Naples Federico II. His research focuses on methodologies and technologies in industrial and service robotics including force and visual control, cooperative robots, human-robot interaction, and aerial manipulation. He has co-authored 6 books and over 300 journal papers, conference papers and book chapters. He has delivered over 20 keynote presentations and over 100 colloquia and seminars at institutions around the world. He is a Fellow of IEEE, ASME and IFAC. He is Co-Editor of the Springer Tracts in Advanced Robotics (STAR) series and the Springer Handbook of Robotics, which received the PROSE Award for Excellence in Physical Sciences & Mathematics and was also the winner in the category Engineering & Technology. He has served on the Editorial Boards of prestigious journals, as well as Chair or Co-Chair for numerous international conferences. Professor Siciliano is the Past-President of the IEEE Robotics and Automation Society (RAS). He has been the recipient of several awards, including the IEEE RAS George Saridis Leadership Award in Robotics and Automation and the IEEE RAS Distinguished Service Award.

Oussama Khatib received his Doctorate degree in Electrical Engineering from Sup’Aero, Toulouse, France, in 1980. He is Professor of Computer Science at Stanford University. His research focuses on methodologies and technologies in human-centered robotics including humanoid control architectures, human motion synthesis, interactive dynamic simulation, haptics, and human-friendly robot design. He has co-authored over 300 journal papers, conference papers and book chapters. He has delivered over 100 keynote presentations and several hundreds of colloquia and seminars at institutions around the world. He is a Fellow of IEEE. He is Co-Editor of the Springer Tracts in Advanced Robotics (STAR) series and the Springer Handbook of Robotics, which received the PROSE Award for Excellence in Physical Sciences & Mathematics and was also the winner in the category Engineering & Technology. He has served on the Editorial Boards of prestigious journals, as well as Chair or Co-Chair for numerous international conferences. Professor Khatib is the President of the International Foundation of Robotics Research. He has been the recipient of several awards, including the IEEE RAS Pioneer Award in Robotics and Automation, the IEEE RAS George Saridis Leadership Award in Robotics and Automation, the IEEE RAS Distinguished Service Award, and the Japan Robot Association (JARA) Award in Research and Development.

Foreword 5
Foreword 10
Foreword 12
Foreword 14
Preface to the Second Edition 15
Preface to the Multimedia Extension 16
About the Editors 18
About the Part Editors 19
About the Multimedia Editors 21
List of Authors 23
Contents 38
List of Abbreviations 57
1 Robotics and the Handbook 71
1.1 A Brief History of Robotics 71
1.2 The Robotics Community 72
1.3 This Handbook 74
Video-References 76
Part A Robotics Foundations 77
2 Kinematics 81
2.1 Overview 82
2.2 Position and Orientation Representation 82
2.3 Joint Kinematics 91
2.4 Geometric Representation 95
2.5 Workspace 97
2.6 Forward Kinematics 98
2.7 Inverse Kinematics 99
2.8 Forward Instantaneous Kinematics 101
2.9 Inverse Instantaneous Kinematics 102
2.10 Static Wrench Transmission 103
2.11 Conclusions and Further Reading 103
References 103
3 Dynamics 106
3.1 Overview 107
3.2 Spatial Vector Notation 108
3.3 Canonical Equations 114
3.4 Dynamic Models of Rigid-Body Systems 116
3.5 Kinematic Trees 120
3.6 Kinematic Loops 127
3.7 Conclusions and Further Reading 130
References 132
4 Mechanism and Actuation 136
4.1 Overview 137
4.2 System Features 137
4.3 Kinematics and Kinetics 138
4.4 Serial Robots 141
4.5 Parallel Robots 142
4.6 Mechanical Structure 144
4.7 Joint Mechanisms 145
4.8 Actuators 147
4.9 Robot Performance 154
4.10 Conclusions and Further Reading 156
Video-References 156
References 156
5 Sensing and Estimation 159
5.1 Introduction 159
5.2 The Perception Process 160
5.3 Sensors 162
5.4 Estimation Processes 166
5.5 Representations 177
5.6 Conclusions and Further Readings 179
References 179
6 Model Identification 181
6.1 Overview 181
6.2 Kinematic Calibration 183
6.3 Inertial Parameter Estimation 190
6.4 Identifiability and Numerical Conditioning 195
6.5 Conclusions and Further Reading 203
Video-References 204
References 205
7 Motion Planning 207
7.1 Robotics Motion Planning 207
7.2 Motion Planning Concepts 208
7.3 Sampling-Based Planning 209
7.4 Alternative Approaches 212
7.5 Differential Constraints 216
7.6 Extensions and Variations 219
7.7 Advanced Issues 222
7.8 Conclusions and Further Reading 225
Video-References 226
References 226
8 Motion Control 230
8.1 Introduction to Motion Control 231
8.2 Joint Space Versus Operational Space Control 233
8.3 Independent-Joint Control 234
8.4 PID Control 236
8.5 Tracking Control 239
8.6 Computed-Torque Control 241
8.7 Adaptive Control 244
8.8 Optimal and Robust Control 248
8.9 Trajectory Generation and Planning 250
8.10 Digital Implementation 254
8.11 Learning Control 257
Video-References 258
References 258
9 Force Control 262
9.1 Background 262
9.2 Indirect Force Control 265
9.3 Interaction Tasks 272
9.4 Hybrid Force/Motion Control 278
9.5 Conclusions and Further Reading 283
Video-References 284
References 284
10 Redundant Robots 287
10.1 Overview 287
10.2 Task-Oriented Kinematics 290
10.3 Inverse Differential Kinematics 293
10.4 Redundancy Resolution via Optimization 298
10.5 Redundancy Resolution via Task Augmentation 299
10.6 Second-Order Redundancy Resolution 302
10.7 Cyclicity 303
10.8 Fault Tolerance 303
10.9 Conclusion and Further Reading 305
Video-References 305
References 306
11 Robots with Flexible Elements 309
11.1 Robots with Flexible Joints 310
11.2 Robots with Flexible Links 329
Video-References 345
References 345
12 Robotic Systems Architectures and Programming 349
12.1 Overview 349
12.2 History 351
12.3 Architectural Components 355
12.4 Case Study – GRACE 362
12.5 The Art of Robot Architectures 364
12.6 Implementing Robotic Systems Architectures 365
12.7 Conclusions and Further Reading 368
Video-References 368
References 368
13 Behavior-Based Systems 372
13.1 Robot Control Approaches 373
13.2 Basic Principles of Behavior-Based Systems 375
13.3 Basis Behaviors 378
13.4 Representation in Behavior-Based Systems 378
13.5 Learning in Behavior-Based Systems 379
13.6 Applications and Continuing Work 383
13.7 Conclusions and Further Reading 387
Video-References 387
References 388
14 AI Reasoning Methods for Robotics 393
14.1 Why Should a Robot Use AI-Type Reasoning? 394
14.2 Knowledge Representation and Processing 394
14.3 Reasoning and Decision Making 402
14.4 Plan-Based Robot Control 410
14.5 Conclusions and Further Reading 414
Video-References 415
References 415
15 Robot Learning 421
15.1 What Is Robot Learning 422
15.2 Model Learning 424
15.3 Reinforcement Learning 436
15.4 Conclusions 449
Video-References 450
References 450
Part B Design 459
16 Design and Performance Evaluation 462
16.1 The Robot Design Process 463
16.2 Workspace Criteria 464
16.3 Dexterity Indices 468
16.4 Other Performance Indices 471
16.5 Other Robot Types 474
16.6 Summary 479
References 479
17 Limbed Systems 482
17.1 Design of Limbed Systems 483
17.2 Conceptual Design 483
17.3 Whole Design Process Example 486
17.4 Model Induced Design 490
17.5 Various Limbed Systems 497
17.6 Performance Indices 500
Video-References 502
References 503
18 Parallel Mechanisms 506
18.1 Definitions 506
18.2 Type Synthesis of Parallel Mechanisms 508
18.3 Kinematics 509
18.4 Velocity and Accuracy Analysis 510
18.5 Singularity Analysis 511
18.6 Workspace Analysis 513
18.7 Static Analysis 514
18.8 Dynamic Analysis 515
18.9 Design 515
18.10 Wire-Driven Parallel Robots 516
18.11 Application Examples 518
18.12 Conclusion and Further Reading 518
Video-References 519
References 519
19 Robot Hands 525
19.1 Basic Concepts 526
19.2 Design of Robot Hands 527
19.3 Technologies for Actuation and Sensing 532
19.4 Modeling and Control of a Robot Hand 535
19.5 Applications and Trends 539
19.6 Conclusions and Further Reading 540
Video-References 540
References 541
20 Snake-Like and Continuum Robots 543
20.1 Snake Robots – Short History 543
20.2 Continuum Robots – Short History 547
20.3 Snake-Like and Continuum Robot Modeling 549
20.4 Modeling of Locomotion for Snake-Like and Continuum Mechanisms 553
20.5 Conclusion and Extensions to Related Areas 554
Video-References 554
References 554
21 Actuators for Soft Robotics 561
21.1 Background 562
21.2 Soft Robot Design 564
21.3 Modeling Actuators for Soft Robotics 570
21.4 Modeling Soft Robots 573
21.5 Stiffness Estimation 575
21.6 Cartesian Stiffness Control 577
21.7 Periodic Motion Control 580
21.8 Optimal Control of Soft Robots 583
21.9 Conclusions and Open Problems 586
Video-References 587
References 588
22 Modular Robots 593
22.1 Concepts and Definitions 593
22.2 Reconfigurable Modular Manipulators 595
22.3 Self-Reconfigurable Modular Robots 597
22.4 Conclusion and Further Reading 601
Video-References 602
References 602
23 Biomimetic Robots 605
23.1 Overview 606
23.2 Components of Biomimetic Robot Design 606
23.3 Mechanisms 607
23.4 Material and Fabrication 623
23.5 Conclusion 629
Video-References 630
References 631
24 Wheeled Robots 637
24.1 Overview 637
24.2 Mobility of Wheeled Robots 638
24.3 Wheeled Robot Structures 644
24.4 Wheel–Terrain Interaction Models 648
24.5 Wheeled Robot Suspensions 651
24.6 Conclusions 654
Video-References 654
References 655
25 Underwater Robots 656
25.1 Background 656
25.2 Mechanical Systems 657
25.3 Power Systems 660
25.4 Underwater Actuators and Sensors 662
25.5 Computers, Communications, and Architecture 667
25.6 Underwater Manipulators 675
25.7 Conclusions and Further Reading 678
Video-References 679
References 679
26 Flying Robots 683
26.1 Background and History 684
26.2 Characteristics of Aerial Robotics 685
26.3 Basics of Aerodynamics and Flight Mechanics 689
26.4 Airplane Modeling and Design 701
26.5 Rotorcraft Modeling and Design 707
26.6 Flapping Wing Modeling and Design 713
26.7 System Integration and Realization 719
26.8 Applications of Aerial Robots 722
26.9 Conclusions and Further Reading 726
Video-References 726
References 727
27 Micro-/Nanorobots 730
27.1 Overview of Micro- and Nanorobotics 730
27.2 Scaling 733
27.3 Actuation at the Micro- and Nanoscales 734
27.4 Imaging at the Micro- and Nanoscales 735
27.5 Fabrication 737
27.6 Microassembly 740
27.7 Microrobotics 746
27.8 Nanorobotics 751
27.9 Conclusions 763
Video-References 763
References 763
Part C Sensing and Perception 771
28 Force and Tactile Sensing 774
28.1 Overview 774
28.2 Sensor Types 775
28.3 Tactile Information Processing 782
28.4 Integration Challenges 787
28.5 Conclusions and Future Developments 788
Video-References 788
References 788
29 Inertial Sensing, GPS and Odometry 794
29.1 Odometry 794
29.2 Gyroscopic Systems 796
29.3 Accelerometers 799
29.4 IMU Packages 800
29.5 Satellite-Based Positioning (GPS and GNSS) 801
29.6 GPS-IMU Integration 806
29.7 Further Reading 807
29.8 Currently Available Hardware 807
References 808
30 Sonar Sensing 809
30.1 Sonar Principles 810
30.2 Sonar Beam Pattern 812
30.3 Speed of Sound 814
30.4 Waveforms 814
30.5 Transducer Technologies 815
30.6 Reflecting Object Models 816
30.7 Artifacts 817
30.8 TOF Ranging 818
30.9 Echo Waveform Coding 821
30.10 Echo Waveform Processing 823
30.11 CTFM Sonar 825
30.12 Multipulse Sonar 828
30.13 Sonar Rings and Arrays 829
30.14 Motion Effects 831
30.15 Biomimetic Sonars 834
30.16 Conclusions 835
Video-References 836
References 836
31 Range Sensing 839
31.1 Range Sensing Basics 839
31.2 Sensor Technologies 841
31.3 Registration 850
31.4 Navigation and Terrain Classification and Mapping 860
31.5 Conclusions and Further Reading 863
References 863
32 3-D Vision for Navigation and Grasping 867
32.1 Geometric Vision 868
32.2 3-D Vision for Grasping 876
32.3 Conclusion and Further Reading 878
Video-References 878
References 878
33 Visual Object Class Recognition 881
33.1 Object Classes 881
33.2 Review of the State of the Art 882
33.3 Discussion and Conclusions 893
References 894
34 Visual Servoing 897
34.1 The Basic Components of Visual Servoing 898
34.2 Image-Based Visual Servo 899
34.3 Pose-Based Visual Servo 907
34.4 Advanced Approaches 910
34.5 Performance Optimization and Planning 912
34.6 Estimation of 3-D Parameters 914
34.7 Determining s* and Matching Issues 915
34.8 Target Tracking 915
34.9 Eye-in-Hand and Eye-to-Hand Systems Controlled in the Joint Space 916
34.10 Under Actuated Robots 917
34.11 Applications 919
34.12 Conclusions 919
Video-References 919
References 919
35 Multisensor Data Fusion 923
35.1 Multisensor Data Fusion Methods 923
35.2 Multisensor Fusion Architectures 936
35.3 Applications 941
35.4 Conclusions 945
Video-References 946
References 946
Part D Manipulation and Interfaces 949
36 Motion for Manipulation Tasks 952
36.1 Overview 953
36.2 Task-Level Control 955
36.3 Manipulation Planning 959
36.4 Assembly Motion 966
36.5 Unifying Feedback Control and Planning 973
36.6 Conclusions and Further Reading 975
Video-References 978
References 978
37 Contact Modeling and Manipulation 985
37.1 Overview 985
37.2 Kinematics of Rigid-Body Contact 986
37.3 Forces and Friction 990
37.4 Rigid-Body Mechanics with Friction 993
37.5 Pushing Manipulation 996
37.6 Contact Interfaces and Modeling 997
37.7 Friction Limit Surface 1000
37.8 Contacts in Grasping and Fixture Designs 1003
37.9 Conclusions and Further Reading 1004
Video-References 1005
References 1005
38 Grasping 1009
38.1 Models and Definitions 1010
38.2 Controllable Twists and Wrenches 1015
38.3 Compliant Grasps 1019
38.4 Restraint Analysis 1021
38.5 Examples 1029
38.6 Conclusion and Further Reading 1039
Video-References 1040
References 1040
39 Cooperative Manipulation 1043
39.1 Historical Overview 1044
39.2 Kinematics and Statics 1045
39.3 Cooperative Task Space 1049
39.4 Dynamics and Load Distribution 1050
39.5 Task-Space Analysis 1052
39.6 Control 1053
39.7 Conclusions and Further Reading 1057
Video-References 1058
References 1058
40 Mobility and Manipulation 1061
40.1 Grasping and Manipulation 1063
40.2 Control 1067
40.3 Motion Generation 1071
40.4 Learning 1075
40.5 Perception 1079
40.6 Conclusions and Further Reading 1083
Video-References 1083
References 1084
41 Active Manipulation for Perception 1090
41.1 Perception via Manipulation 1090
41.2 Object Localization 1091
41.3 Learning About an Object 1102
41.4 Recognition 1107
41.5 Conclusions 1110
Video-References 1111
References 1111
42 Haptics 1115
42.1 Overview 1116
42.2 Haptic Device Design 1120
42.3 Haptic Rendering 1123
42.4 Control and Stability of Force Feedback Interfaces 1125
42.5 Other Types of Haptic Interfaces 1127
42.6 Conclusions and Further Reading 1131
References 1131
43 Telerobotics 1136
43.1 Overview and Terminology 1136
43.2 Telerobotic Systems and Applications 1138
43.3 Control Architectures 1141
43.4 Bilateral Control and Force Feedback 1146
43.5 Emerging Applications of Telerobotics 1152
43.6 Conclusions and Further Reading 1155
Video-References 1155
References 1156
44 Networked Robots 1160
44.1 Overview and Background 1160
44.2 A Brief History 1161
44.3 Communications and Networking 1163
44.4 Properties of Networked Robots 1166
44.5 Cloud Robotics 1172
44.6 Conclusion and Future Directions 1176
Video-References 1177
References 1177
Part E Moving in the Environment 1183
45 World Modeling 1185
45.1 Historical Overview 1186
45.2 Models for Indoors and Structured Environments 1187
45.3 World and Terrain Models for Natural Environments 1191
45.4 Dynamic Environments 1199
45.5 Summary and Further Reading 1199
Video-References 1200
References 1200
46 Simultaneous Localization and Mapping 1203
46.1 SLAM: Problem Definition 1204
46.2 The Three Main SLAM Paradigms 1207
46.3 Visual and RGB-D SLAM 1216
46.4 Conclusion and Future Challenges 1219
Video-References 1220
References 1220
47 Motion Planning and Obstacle Avoidance 1226
47.1 Nonholonomic Mobile Robots: Where Motion Planning Meets Control Theory 1227
47.2 Kinematic Constraints and Controllability 1228
47.3 Motion Planning and Small-Time Controllability 1229
47.4 Local Steering Methods and Small-Time Controllability 1230
47.5 Robots and Trailers 1233
47.6 Approximate Methods 1235
47.7 From Motion Planning to Obstacle Avoidance 1236
47.8 Definition of Obstacle Avoidance 1236
47.9 Obstacle Avoidance Techniques 1237
47.10 Robot Shape, Kinematics, and Dynamics in Obstacle Avoidance 1243
47.11 Integration Planning – Reaction 1245
47.12 Conclusions, Future Directions, and Further Reading 1247
Video-References 1248
References 1248
48 Modeling and Control of Legged Robots 1251
48.1 A Brief History of Legged Robots 1252
48.2 The Dynamics of Legged Locomotion 1252
48.3 Stability Analysis – Not Falling Down 1257
48.4 Generation of Dynamic Walking and Running Motions 1262
48.5 Motion and Force Control 1270
48.6 Towards More Efficient Walking 1273
48.7 Different Contact Behaviors 1275
48.8 Conclusion 1276
References 1276
49 Modeling and Control of Wheeled Mobile Robots 1283
49.1 Background 1284
49.2 Control Models 1286
49.3 Adaptation of Control Methods for Holonomic Systems 1288
49.4 Methods Specific to Nonholonomic Systems 1289
49.5 Path Following in the Case of Nonideal Wheel-Ground Contact 1303
49.6 Complementary Issues and Bibliographical Guide 1309
Video-References 1311
References 1311
50 Modeling and Control of Robots on Rough Terrain 1314
50.1 Overview 1315
50.2 Modeling of Wheeled Robot in Rough Terrain 1317
50.3 Control of Wheeled Robot in Rough Terrain 1321
50.4 Modeling of Tracked Vehicle on Rough Terrain 1323
50.5 Stability Analysis of Tracked Vehicles 1325
50.6 Control of Tracked Vehicle on Rough Terrain 1326
50.7 Summary 1328
Video-References 1328
References 1329
51 Modeling and Control of Underwater Robots 1332
51.1 The Expanding Role of Marine Robotics in Oceanic Engineering 1332
51.2 Underwater Robotics 1334
51.3 Applications 1349
51.4 Conclusions and Further Reading 1350
Video-References 1351
References 1351
52 Modeling and Control of Aerial Robots 1354
52.1 Overview 1354
52.2 Modeling Aerial Robotic Vehicles 1356
52.3 Control 1363
52.4 Trajectory Planning 1371
52.5 Estimating the Vehicle State 1375
52.6 Conclusion 1377
Video-References 1378
References 1378
53 Multiple Mobile Robot Systems 1381
53.1 History 1382
53.2 Architectures for Multirobot Systems 1383
53.3 Communication 1385
53.4 Networked Mobile Robots 1386
53.5 Swarm Robots 1397
53.6 Modular Robotics 1400
53.7 Heterogeneity 1403
53.8 Task Allocation 1405
53.9 Learning 1407
53.10 Applications 1408
53.11 Conclusions and Further Reading 1412
Video-References 1412
References 1413
Part F Robots at Work 1426
54 Industrial Robotics 1430
54.1 Industrial Robotics: The Main Driver for Robotics Research and Application 1431
54.2 A Short History of Industrial Robots 1431
54.3 Industrial Robot Kinematics 1437
54.4 Typical Industrial Robot Applications 1438
54.5 Safe Human–Robot Collaboration 1450
54.6 Task Descriptions – Teaching and Programming 1454
54.7 System Integration 1459
54.8 Outlook and Long-Term Challenges 1461
Video-References 1463
References 1463
55 Space Robotics 1467
55.1 Historical Developments and Advances of Orbital Robotic Systems 1468
55.2 Historical Developments and Advances of Surface Robotic Systems 1474
55.3 Mathematical Modeling 1481
55.4 Future Directions of Orbital and Surface Robotic Systems 1496
55.5 Conclusions and Further Reading 1501
Video-References 1501
References 1502
56 Robotics in Agriculture and Forestry 1506
56.1 Section Scope 1507
56.2 Challenges and Opportunities 1508
56.3 Case Studies 1510
56.4 Conclusion 1530
Video-References 1531
References 1532
57 Robotics in Construction 1536
57.1 Overview 1537
57.2 Offsite Applications of Robotics in Construction 1542
57.3 Onsite Applications of Single Task Construction Robots 1547
57.4 Integrated Robotized Construction Sites 1554
57.5 Currently Unsolved Technical Problems 1557
57.6 Future Directions 1559
57.7 Conclusions and Further Reading 1559
Video-References 1560
References 1560
58 Robotics in Hazardous Applications 1563
58.1 Operation in Hazardous Environments: The Need for a Robotics Solution 1563
58.2 Applications 1565
58.3 Enabling Technologies 1579
58.4 Conclusions and Further Reading 1586
Video-References 1587
References 1588
59 Robotics in Mining 1591
59.1 Modern Mining Practice 1592
59.2 Surface Mining 1594
59.3 Underground Mining 1604
59.4 Challenges and Industry Acceptance 1610
59.5 Challenges, Outlook, and Conclusion 1611
Video-References 1613
References 1614
60 Disaster Robotics 1619
60.1 Overview 1620
60.2 Disaster Characteristics and Impact on Robots 1623
60.3 Robots Actually Used at Disasters 1624
60.4 Robots at the Fukushima-Daiichi Nuclear Power Plant Accident 1630
60.5 Lessons Learned, Challenges, and Novel Approaches 1633
60.6 Evaluation 1640
60.7 Conclusions and Further Reading 1642
Video-References 1643
References 1643
61 Robot Surveillance and Security 1647
61.1 Overview 1647
61.2 Application Domains 1649
61.3 Enabling Technologies 1650
61.4 Active Research 1659
61.5 Conclusion 1664
Video-References 1665
References 1665
62 Intelligent Vehicles 1668
62.1 The Motivation and Approaches to Intelligent Vehicles 1669
62.2 Enabling Technologies 1673
62.3 Road Scene Understanding 1676
62.4 Advanced Driver Assistance 1680
62.5 Driver Monitoring 1686
62.6 Towards Fully Autonomous Vehicles 1688
62.7 Future Trends and Prospects 1691
62.8 Conclusions and Further Reading 1692
Video-References 1693
References 1693
63 Medical Robotics and Computer-Integrated Surgery 1697
63.1 Core Concepts 1698
63.2 Technology 1702
63.3 Systems, Research Areas, and Applications 1707
63.4 Conclusion and Future Directions 1715
Video-References 1716
References 1716
64 Rehabilitation and Health Care Robotics 1724
64.1 Overview 1725
64.2 Rehabilitation Therapy and Training Robots 1731
64.3 Aids for People with Disabilities 1742
64.4 Smart Prostheses and Orthoses 1750
64.5 Augmentation for Diagnosis and Monitoring 1752
64.6 Safety, Ethics, Access and Economics 1754
64.7 Conclusions and Further Readings 1755
Video-References 1756
References 1756
65 Domestic Robotics 1768
65.1 Mobile Domestic Robotics 1769
65.2 Enabling Technologies 1786
65.3 Smart Homes 1793
Video-References 1796
References 1796
66 Robotics Competitions and Challenges 1798
66.1 Introduction 1799
66.2 Overview 1799
66.3 Competitions Inspired by Human Competitions 1801
66.4 Task-Oriented Competitions 1808
66.5 Conclusion and Further Reading 1819
Video-References 1820
References 1820
Part G Robots and Humans 1823
67 Humanoids 1827
67.1 Why Humanoids? 1827
67.2 History 1830
67.3 What to Immitate? 1832
67.4 Locomotion 1833
67.5 Whole-Body Activities 1839
67.6 Morphological Communication 1847
67.7 Conclusions and Further Reading 1851
Video-References 1851
References 1851
68 Human Motion Reconstruction 1857
68.1 Overview 1857
68.2 Models and Computations 1858
68.3 Reconstruction for Understanding 1863
68.4 Reconstruction for Robots 1867
Video-References 1868
References 1869
69 Physical Human–Robot Interaction 1872
69.1 Classification 1873
69.2 Human Safety 1876
69.3 Human-Friendly Robot Design 1884
69.4 Control for Physical Interaction 1890
69.5 Motion Planning for Human Environments 1896
69.6 Interaction Planning 1899
69.7 Conclusions and Challenges 1904
Video-References 1905
References 1906
70 Human–Robot Augmentation 1912
70.1 Concept and Definitions 1913
70.2 Upper Limb Wearable Systems 1914
70.3 Lower Limb Wearable Systems 1919
70.4 Whole Body Wearable Systems 1926
70.5 Control of Human–Robot Augmentation Systems 1929
70.6 Conclusions and Further Developments 1939
Video-References 1939
References 1939
71 Cognitive Human–Robot Interaction 1944
71.1 Human Models of Interaction 1945
71.2 Robot Models of Interaction 1951
71.3 Models of Human–Robot Interaction 1953
71.4 Conclusion and Further Reading 1964
Video-References 1964
References 1965
72 Social Robotics 1971
72.1 Overview 1972
72.2 Social Robot Embodiment 1972
72.3 Social Robots and Social-Emotional Intelligence 1974
72.4 Socio-Cognitive Skills 1977
72.5 Human Social Responses to Social Robots 1980
72.6 Social Robots and Communication Skills 1982
72.7 Long-Term Interaction with Robot Companions 1986
72.8 Tactile Interaction with Social Robots 1990
72.9 Social Robots and Teamwork 1994
72.10 Conclusion 1995
72.11 Further Reading 1996
Video-References 1996
References 1997
73 Socially Assistive Robotics 2008
73.1 Overview 2008
73.2 The Need for Socially Assistive Robotics 2009
73.3 Advantages of Embodied Robots over Virtual Agents 2010
73.4 Motivation, Autonomy, and Companionship 2012
73.5 Influence and the Dynamics of Assistive Interaction 2013
73.6 Personalization and Adaptation to Specific Needs and Abilities 2013
73.7 Creating Long-Term Engagement and Behaviour Change 2014
73.8 SAR for Autism Spectrum Disorder (ASD) Therapy 2015
73.9 SAR Supporting Rehabilitation 2017
73.10 SAR and Eldercare 2020
73.11 SAR for Alzheimer's Dementia and Cognitive Rehabilitation 2021
73.12 Ethical and Safety Considerations 2022
References 2023
74 Learning from Humans 2029
74.1 Learning of Robots 2029
74.2 Key Issues When Learning from Human Demonstrations 2032
74.3 Interfaces for Demonstration 2034
74.4 Algorithms to Learn from Humans 2036
74.5 Conclusions and Open Issues in Robot LfD 2042
Video-References 2043
References 2043
75 Biologically Inspired Robotics 2049
75.1 General Background 2050
75.2 Methodology 2051
75.3 Case Studies 2055
75.4 Landscape of Bio-Inspired Robotics Research and Challenges 2060
75.5 Conclusion 2062
Video-References 2063
References 2063
76 Evolutionary Robotics 2068
76.1 Method 2069
76.2 First Steps 2069
76.3 Simulation and Reality 2073
76.4 Behavior as a Complex Adaptive System 2074
76.5 Evolving Bodies 2077
76.6 Seeing the Light 2079
76.7 Computational Neuroethology 2082
76.8 Evolution and Learning 2087
76.9 Evolution of Social Behavior 2090
76.10 Evolutionary Hardware 2093
76.11 Closing Remarks 2094
Video-References 2094
References 2095
77 Neurorobotics: From Vision to Action 2101
77.1 Definitions and History 2102
77.2 The Case for Vision 2103
77.3 Vertebrate Motor Control 2107
77.4 The Role of Mirror Systems 2114
77.5 Conclusion and Further Reading 2121
References 2122
78 Perceptual Robotics 2127
78.1 Perceptual Mechanisms of Object Representations 2129
78.2 Perceptual Mechanisms of Action Representation 2135
78.3 Perceptual Validation of Robotics 2139
78.4 Conclusion and Further Reading 2140
Video-References 2141
References 2141
79 Robotics for Education 2146
79.1 The Role of Robots in Education 2147
79.2 Educational Robot Tournaments 2148
79.3 Education Robot Platforms 2151
79.4 Education Robot Controllers and Programming Environments 2154
79.5 Robotic Technologies for Student Learning 2158
79.6 Educational Evaluation of Robot Programs 2160
79.7 Conclusions and Further Reading 2162
Video-References 2162
References 2162
80 Roboethics: Social and Ethical Implications 2166
80.1 A Methodological Note 2168
80.2 Specificity of Robotics 2169
80.3 Cultural Differences in the Acceptance of Robots 2169
80.4 Roboethics Foreshadowed in the Literature 2170
80.5 And Expressed in Real Robotics 2170
80.6 Ethics in Science and Technology 2171
80.7 Ethical Issues in an ICT Society 2174
80.8 Human Principles and Rights 2175
80.9 Legal Issues in Robotics 2177
80.10 Roboethics Taxonomy 2178
80.11 Roboethics Enforced: From Ideals to Rules 2187
80.12 Conclusions and Further Reading 2188
Video-References 2189
References 2190
Erratum to: Physical Human–Robot Interaction 2192
Acknowledgements 2193
About the Authors 2195
Index 2192

Erscheint lt. Verlag 27.7.2016
Verlagsort Cham
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte Basic Principles and Methods of Robotics • Biologically-Inspired Robots • Human-Robot Interaction • Industrial Robotics • Life-Like Robotics • Manipulation and Interfaces of Robots • Mobile and Distributed Robotics • Roboethics • Robotics • Robotics Foundations • Robot Structures • Sensing and Perception of Robots • Springer Handbook of Robotics
ISBN-10 3-319-32552-3 / 3319325523
ISBN-13 978-3-319-32552-1 / 9783319325521
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 93,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99