System Dynamics for Engineering Students -  Nicolae Lobontiu

System Dynamics for Engineering Students (eBook)

Concepts and Applications
eBook Download: PDF | EPUB
2010 | 1. Auflage
532 Seiten
Elsevier Science (Verlag)
978-0-08-092842-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
95,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
System Dynamics is an engineering discipline in which students learn how to create and analyze mathematical models of dynamic mechanical, electrical/electromagnetic, thermal and fluid/pneumatic systems with the practical goal of using this knowledge to design and test various real-world systems before they are built, thus realizing significant cost savings. System Dynamics for Engineering Students by Nicolae Lobontiu, takes the classical approach to system dynamics, rearranges it into a more logical teaching progression, provides a more balanced coverage of the main field systems(mechanical, electrical/electromagnetic, thermal and fluid/pneumatic), and is the first system dynamics textbook to include extensive examples from the relatively new application areas of microelectromechanical systems (MEMS) and compliant (flexible) mechanical devices. Written by an established author with extensive teaching and research experience in the field of MEMS/NEMS, this book also provides unique coverage of couple-field problems and offers more ancillary instructor support than any other system dynamics text.

Unique Features and Benefits: * Offers a more balanced treatment of mechanical and electrical systems, making it appealing to both engineering specialties. * The first system dynamics textbook to introduce examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). *The first textbook to include a chapter on the important area of coupled-field systems.

*Special icons placed throughout the text indicate where students can find additional content and worked examples on the book's ,Companion website. * Includes treatment of topics that have not been included thus far in system dynamics texts, such as those from the magnetic and piezoelectric domains or actuation, sensing and instrumentation. *MATLAB/Simulink computational software tools incorporated throughout the book. * With available online instructor's manual, image bank, PowerPoint lecture slides, and optional design projects, provides more instructor support than any other system dynamics text.


System Dynamics for Engineering Students: Concepts and Applications discusses the basic concepts of engineering system dynamics. Engineering system dynamics focus on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models. The resulting solution is utilized in design or analysis before producing and testing the actual system. The book discusses the main aspects of a system dynamics course for engineering students; mechanical, electrical, and fluid and thermal system modeling; the Laplace transform technique; and the transfer function approach. It also covers the state space modeling and solution approach; modeling system dynamics in the frequency domain using the sinusoidal (harmonic) transfer function; and coupled-field dynamic systems. The book is designed to be a one-semester system-dynamics text for upper-level undergraduate students with an emphasis on mechanical, aerospace, or electrical engineering. It is also useful for understanding the design and development of micro- and macro-scale structures, electric and fluidic systems with an introduction to transduction, and numerous simulations using MATLAB and SIMULINK. The first textbook to include a chapter on the important area of coupled-field systems Provides a more balanced treatment of mechanical and electrical systems, making it appealing to both engineering specialties

Front Cover 1
Half Title Page 2
Title Page 4
Copyright Page 5
Dedication 6
Motto-Dedication 8
Table of Contents 10
Foreword 16
Preface 18
Resources That Accompany This Book 24
CHAPTER 1. Introduction 26
1.1 Engineering System Dynamics 26
1.2 Modeling Engineering System Dynamics 27
1.2.1 Modeling Variants 28
1.2.2 Dynamical Systems Lumped-Parameter Modeling and Solution 31
1.3 Components, System, Input, and Output 32
1.4 Compliant Mechanisms and Microelectromechanical Systems 34
1.5 System Order 38
1.5.1 Zero-Order Systems 38
1.5.2 First-Order Systems 39
1.5.3 Second- and Higher-Order Systems 41
1.6 Coupled-Field (Multiple-Field) Systems 44
1.7 Linear and Nonlinear Dynamic Systems 46
CHAPTER 2. Mechanical Systems I 50
Objectives 50
Introduction 50
2.1 Basic Mechanical Elements: Inertia, Stiffness, Damping, and Forcing 51
2.1.1 Inertia Elements 51
2.1.2 Spring Elements 54
2.1.3 Damping Elements 57
2.1.4 Actuation (Forcing) 60
2.2 Basic Mechanical Systems 61
2.2.1 Newton’s Second Law of Motion Applied to Mechanical Systems Modeling 61
2.2.2 Free Response 62
2.2.3 Forced Response with Simulink® 76
Summary 83
Problems 83
Suggested Reading 89
CHAPTER 3. Mechanical Systems II 90
Objectives 90
Introduction 90
3.1 Lumped Inertia and Stiffness of Compliant Elements 91
3.1.1 Inertia Elements 92
3.1.2 Spring Elements 96
3.2 Natural Response of Compliant Single Degree-of-Freedom Mechanical Systems 98
3.3 Multiple Degree-of-Freedom Mechanical Systems 103
3.3.1 Configuration, Degrees of Freedom 103
3.3.2 Conservative Mechanical Systems 105
3.3.3 Forced Response with Simulink® 114
Summary 120
Problems 120
Suggested Reading 127
CHAPTER 4. Electrical Systems 128
Objectives 128
Introduction 128
4.1 Electrical Elements: Voltage and Current Sources, Resistor, Capacitor, Inductor, Operational Amplifier 129
4.1.1 Voltage and Current Source Elements 129
4.1.2 Resistor Elements 129
4.1.3 Capacitor Elements 133
4.1.4 Inductor Elements 140
4.1.5 Operational Amplifiers 141
4.2 Electrical Circuits and Networks 142
4.2.1 Kirchhoff’s Laws 142
4.2.2 Configuration, Degrees of Freedom 145
4.2.3 Methods for Electrical Systems Modeling 147
4.2.4 Free Response 150
4.2.5 Operational Amplifier Circuits 158
4.2.6 Forced Response with Simulink® 162
Summary 167
Problems 167
Suggested Reading 174
CHAPTER 5. Fluid and Thermal Systems 176
Objectives 176
Introduction 176
5.1 Liquid Systems Modeling 177
5.1.1 Bernoulli’s Law and the Law of Mass Conservation 177
5.1.2 Liquid Elements 180
5.1.3 Liquid Systems 194
5.2 Pneumatic Systems Modeling 203
5.2.1 Gas Laws 203
5.2.2 Pneumatic Elements 204
5.2.3 Pneumatic Systems 206
5.3 Thermal Systems Modeling 208
5.3.1 Thermal Elements 208
5.3.2 Thermal Systems 214
5.4 Forced Response with Simulink® 216
Summary 220
Problems 220
Suggested Reading 227
CHAPTER 6. The Laplace Transform 230
Objectives 230
Introduction 230
6.1 Direct Laplace and Inverse Laplace Transformations 231
6.1.1 Direct Laplace Transform and Laplace Transform Pairs 232
6.1.2 Properties of the Laplace Transform 237
6.2 Solving Differential Equations by the Direct and Inverse Laplace Transforms 251
6.2.1 Analytical and MATLAB® Partial-Fraction Expansion 252
6.2.2 Linear Differential Equations with Constant Coefficients 257
6.2.3 Use of MATLAB® to Calculate Direct and Inverse Laplace Transforms 259
6.2.4 Linear Differential Equation Systems with Constant Coefficients 260
6.2.5 Laplace Transformation of Vector-Matrix Differential Equations 262
6.2.6 Solving Integral and Integral-Differential Equations by the Convolution Theorem 265
6.2.7 Linear Differential Equations with Time-Dependent Coefficients 267
6.3 Time-Domain System Identification from Laplace-Domain Information 269
Summary 271
Problems 271
Suggested Reading 276
CHAPTER 7. Transfer Function Approach 278
Objectives 278
Introduction 278
7.1 The Transfer Function Concept 279
7.2 Transfer Function Model Formulation 282
7.2.1 Analytical Approach 282
7.2.2 MATLAB® Approach 298
7.3 Transfer Function and the Time Response 299
7.3.1 SISO Systems 299
7.3.2 MIMO Systems 312
7.4 Using Simulink® to Transfer Function Modeling 320
Summary 323
Problems 324
Suggested Reading 332
CHAPTER 8. State Space Approach 334
Objectives 334
Introduction 334
8.1 The Concept and Model of the State Space Approach 335
8.2 State Space Model Formulation 342
8.2.1 Analytical Approach 342
8.2.2 MATLAB® Approach 356
8.3 State Space and the Time-Domain Response 361
8.3.1 Analytical Approach: The State-Transition Matrix Method 361
8.3.2 MATLAB® Approach 366
8.4 Using Simulink® for State Space Modeling 372
Summary 377
Problems 378
Suggested Reading 385
CHAPTER 9. Frequency-Domain Approach 386
Objectives 386
Introduction 386
9.1 The Concept of Complex Transfer Function in Steady-State Response and Frequency-Domain Analysis 387
9.2 Calculation of Natural Frequencies for Conservative Dynamic Systems 390
9.2.1 Analytical Approach 390
9.2.2 MATLAB® Approach 394
9.3 Steady-State Response of Dynamic Systems to Harmonic Input 395
9.3.1 Analytical Approach 395
9.3.2 Using MATLAB® for Frequency Response Analysis 408
9.4 Frequency-Domain Applications 414
9.4.1 Transmissibility in Mechanical Systems 415
9.4.2 Cascading Nonloading Systems 425
9.4.3 Filters 427
Summary 432
Problems 432
Suggested Reading 440
CHAPTER 10. Coupled-Field Systems 442
Objectives 442
Introduction 442
10.1 Concept of System Coupling 443
10.2 System Analogies 447
10.2.1 First-Order Systems 447
10.2.2 Second-Order Systems 449
10.3 Electromechanical Coupling 452
10.3.1 Mechanical Strain, Electrical Voltage Coupling 452
10.3.2 Electromagnetomechanical Coupling 458
10.3.3 Electromagnetomechanical Coupling with Optical Detection in MEMS 462
10.3.4 Piezoelectric Coupling 465
10.4 Thermomechanical Coupling: The Bimetallic Strip 479
10.5 Nonlinear Electrothermomechanical Coupled-Field Systems 482
10.6 Simulink® Modeling of Nonlinear Coupled-Field Systems 484
Summary 488
Problems 488
Suggested Reading 497
CHAPTER 11. Introduction to Modeling and Design of Feedback Control Systems . . . www.booksite.academicpress.com/lobontiu 498
APPENDIX A. Solution to Linear Ordinary Homogeneous Differential Equations with Constant Coefficients 590
APPENDIX B. Review of Matrix Algebra 594
APPENDIX C. Essentials of MATLAB® and System Dynamics-Related Toolboxes 598
APPENDIX D. Deformations, Strains, and Stresses of Flexible Mechanical Components 610
Index 616

Preface


Engineering system dynamics is a discipline that focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving the mathematical models (most often consisting of differential equations). The resulting solution (which reflects the system response or behavior) is utilized in design or analysis before producing and testing the actual system. Because dynamic systems are characterized by similar mathematical models, a unitary approach can be used to characterize individual systems pertaining to different fields as well as to consider the interaction of systems from multiple fields as in coupled-field problems.

This book was designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. Comprising important components from these areas, the material should also serve cross-listed courses (mechanical-electrical) at a similar study level. In addition to the printed chapters, the book contains an equal number of chapter extensions that have been assembled into a companion website section; this makes it useful as an introductory text for more advanced courses, such as vibrations, controls, instrumentation, or mechatronics. The book can also be useful in graduate coursework or in individual study as reference material. The material contained in this book most probably exceeds the time allotted for a one-semester course lecture, and therefore topical selection becomes necessary, based on particular instruction emphasis and teaching preferences.

While the book maintains its focus on the classical approach to system dynamics, a new feature of this text is the introduction of examples from compliant mechanisms and micro- and nano-electromechanical systems (MEMS/NEMS), which are recognized as increasingly important application areas. As demonstrated in the book, and for the relatively simple examples that have been selected here, this inclusion can really be treated within the regular system dynamics lumped-parameter (pointlike) modeling; therefore, the students not so familiar with these topics should face no major comprehension difficulties. Another central point of this book is proposing a chapter on coupled-field (or multiple-field) systems, whereby interactions between the mechanical, electrical, fluid, and thermal fields occur and generate means for actuation or sensing applications, such as in piezoelectric, electromagnetomechanical, or electrothermomechanical applications.

Another key objective was to assemble a text that is structured, balanced, cohesive, and providing a fluent and logical sequence of topics along the following lines:

1. It starts from simple objects (the components), proceeds to the objects’ assembly (the individual system), and arrives at the system interaction level (coupled-field systems).

2. It uses modeling and solution techniques that are familiar from other disciplines, such as physics or ordinary differential equations, and subsequently introduces new modeling and solution procedures.

3. It provides a rather even coverage (space) to each book chapter.

4. While various chapter structures are possible in a system dynamics text, this book proposes a sequence that was intended to be systematic and consistent with the logical structure and progression of the presented material.

As such, the book begins with an introductory Chapter 1, which offers an overview of the main aspects of a system dynamics course for engineering students. The next four chapters—Chapters 2, 3, 4, and 5—are dedicated, in order, to mechanical (Chapters 2 and 3), electrical (Chapter 4), and fluid and thermal (Chapter 5) system modeling. They contain basic information on components, systems, and the principal physical and mathematical tools that make it possible to model a dynamic system and determine its solution.

Once the main engineering dynamic systems have been studied, Chapter 6 presents the Laplace transform technique, a mathematical tool that allows simplifying the differential equation solution process for any of the individual systems. This chapter is directly connected to the next segment of the book, containing Chapters 7, 8, and 9. Chapter 7 introduces the transfer function approach, which facilitates finding the time-domain response (solution) of a dynamic system after the corresponding unknowns have been determined in the Laplace domain. The complex impedance, which is actually a transfer function connecting the Laplace-transformed input and output of a specific system element, is also introduced and thoroughly treated in this chapter. Chapter 8 studies the state space modeling and solution approach, which is also related to the Laplace transform of Chapter 6 and the transfer function of Chapter 7. Chapter 9 discusses modeling system dynamics in the frequency domain by means of the sinusoidal (harmonic) transfer function.

Chapter 10 analyzes coupled-field (or multiple-field) dynamic systems, which are combinations of mechanical, electrical, magnetic, piezoelectric, fluid, or thermal systems. In this chapter, dynamic models are formulated and solved by means of the procedures studied in previous chapters. Because of the partial and natural overlap between system dynamics and controls, the majority of textbooks on either of these two areas contain coverage of material from the adjoining domain. Consistent with this approach, the companion website contains one chapter, Chapter 11, on introductory controls, where basic time-domain and frequency-domain topics are addressed.

The book also includes four appendices: Appendix A presents the solutions to linear differential equations with constant coefficients, Appendix B is a review of matrix algebra, Appendix C contains basic MATLAB® commands that have been used throughout this text, and Appendix D gives a summary of equations for calculating deformations, strains, and stresses of deformable mechanical components.

The book introduces several topics that are new to engineering system dynamics, as highlighted here:

Chapter 3, Mechanical Systems II

• Lumped-parameter inertia properties of basic compliant (flexible) members.

• Lumped-parameter dynamic modeling of simple compliant mechanical microsystems.

• Mass detection in MEMS by the resonance shift method.

Chapter 4, Electrical Systems

• Capacitive sensing and actuation in MEMS.

Chapter 5, Fluid and Thermal Systems

• Comprehensive coverage of liquid, pneumatic, and thermal systems.

• Natural response of fluid systems.

Chapters 3, 4, and 5

• Notion of degrees of freedom (DOFs) for defining the system configuration of dynamic systems.

• Application of the energy method to calculate the natural frequencies of single- and multiple-DOF conservative systems.

• Utilization of the vector-matrix method to calculate the eigenvalues either analytically or using MATLAB®.

Chapter 6, Laplace Transform

• Linear ordinary differential equations with time-varying coefficients.

• Laplace transformation of vector-matrix differential equations.

• Use of the convolution theorem to solve integral and integral-differential equations.

• Time-domain system identification.

Chapter 7, Transfer Function Approach

• Extension of the single-input, single-output (SISO) transfer function approach to multiple-input, multiple-output (MIMO) systems by means of the transfer function matrix.

• Application of the transfer function approach to solve the forced and the free responses with nonzero initial conditions.

• Systematic introduction and comprehensive application of the complex impedance approach to electrical, mechanical, and fluid and thermal systems.

• MATLAB® conversion between zero-pole-gain (zpk) and transfer function (tf) models.

Chapter 8, State Space Approach

• Treatment of the descriptor state equation.

• Application of the state space approach to solve the forced and free responses with nonzero initial conditions.

• MATLAB® conversion between state space (ss) models and zpk or tf models.

Chapter 9, Frequency-Domain Approach

• State space approach and the frequency domain.

• MATLAB® conversion from zpk, tf, or ss models to frequency response data (frd) models.

• Steady-state response of cascading unloading systems.

• Mechanical and electrical filters.

Chapter 10, Coupled-Field Systems

• Formulation of the coupled-field (multiple-field) problem.

• Principles and applications of sensing and actuation.

• Strain gauge and Wheatstone bridge circuits for measuring mechanical...

Erscheint lt. Verlag 19.3.2010
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Mechanik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-092842-0 / 0080928420
ISBN-13 978-0-08-092842-5 / 9780080928425
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 24,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 9,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
die klassischen Feldtheorien in moderner Darstellung

von Wolfgang H. Müller; Elena N. Vilchevskaya

eBook Download (2024)
Carl Hanser Fachbuchverlag
39,99