Materials Science of Thin Films -  Milton Ohring

Materials Science of Thin Films (eBook)

Depositon and Structure
eBook Download: PDF | EPUB
2001 | 2. Auflage
794 Seiten
Elsevier Science (Verlag)
978-0-08-049178-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
111,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field.

Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.
This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field. Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.

Chapter 2 Vacuum Science and Technology

2.1 INTRODUCTION


Virtually every thin-film deposition and processing method or technique employed to characterize and measure the properties of films requires either a vacuum or some sort of reduced-pressure ambient. For example, there are plasma discharges, sustained at reduced gas pressures, in which many important thin-film deposition and etching processes occur. Evacuated spaces are usually populated by uncharged gas atoms and molecules, but in addition to these, electrons and ionized gas species are present in the more complex plasmas. To better understand these reduced pressure environments a brief introduction to aspects of vacuum science and technology is the starting point of this book. It is also appropriate in a broader sense because this subject matter is among the most undeservedly neglected in the training of scientists and engineers. This is surprising in view of its broad interdisciplinary implications and the ubiquitous use of vacuum in all areas of scientific research and technological endeavor.

The topics treated in this chapter will, therefore, begin with a discussion of the behavior of gases in a closed system. In such systems gas atoms or molecules undergo an animated motion but their concentration and the pressure they exert is uniform throughout; there is no net flow of gas past any arbitrary plane in the system. If the system is opened by attaching pumps to it, net gas transport does occur even though individual gas molecules continue to locally execute the same random motion. With time, however, pressure gradients develop in the system as working chambers are evacuated to low pressures. Limits encountered in achieving high vacuum levels in such systems will be discussed. Some of the hardware that makes vacuum technology possible, namely the pumps and associated gauges required, will close our treatment of this subject.

For further information on the subject the recent handbook by Hoffman set al. (Ref. 1) and text by O’Hanlon (Ref. 2) are recommended references.

2.2 KINETIC THEORY OF GASES


2.2.1 MOLECULAR VELOCITIES


The well-known kinetic theory of gases provides us with an atomistic picture of the state of affairs in a confined rarefied gas (Refs. 3, 4). A fundamental assumption is that the large number of atoms or molecules making up the gas are in a continuous state of random motion that is intimately dependent on their temperature. As they move, the gas particles collide with each other as well as with the walls of the confining vessel. Just how many molecule–molecule or molecule–wall impacts occur depends on the concentration or pressure of the gas. In the perfect or ideal gas approximation there are no attractive or repulsive forces between molecules. Rather, they may be considered to behave like independent elastic spheres separated from each other by distances that are large compared to their size. The net result of the continual elastic collisions and exchange of kinetic energy is that a steady-state distribution of molecular velocities emerges given by the celebrated Maxwell–Boltzmann formula


     (2-1)


This centerpiece of the kinetic theory of gases states that the fractional number of molecules f(ν), where ν is the number per unit volume in the velocity range ν to ν + dv, is related to their molecular weight (M) and absolute temperature (T). In this formula the units of the gas constant R are on a per-mole basis. Among the important implications of Eq. 2-1, which is shown plotted in Fig. 2-1, is that molecules can have neither zero nor infinite velocity. Rather, the most probable molecular velocity of the distribution is realized at the maximum value of f(ν) and can be calculated from the condition that df(ν)/dv = 0. Since the net velocity is always the resultant of three rectilinear components νx, νy, and νz, one (or even two) but, of course, not all three of these may be zero simultaneously. Therefore, a similar distribution function of molecular velocities in each of the componentdirections can be defined; i.e.,

Figure 2-1 Velocity distributions for Al vapor and H2 gas.

(Reprinted with permission from Ref. 3.)


     (2-2)


and similarly for the y and z components.

A number of important results emerge as a consequences of the foregoing equations. For example, the most probable (νm), average and mean square velocities are given, respectively, by


     (2-3a)



     (2-3b)



     (2-3c)


These velocities, which are noted in Fig. 2-1, simply depend on the molecular weight of the gas and the temperature. In air at 300 K, for example, the average molecular velocity is 4.6 × 104 cm/s, which is almost 1030 miles per hour. However, the kinetic energy of any collection of gas molecules is solely dependent on temperature. For a mole it is given by with ½RT partitioned in each of the three coordinate directions.

2.2.2 PRESSURE


Momentum transfer from the gas molecules to the container walls gives rise to the forces that sustain the pressure in the system. Kinetic theory shows that the gas pressure, P, is related to the mean-square velocity of the molecules and thus, alternately to their kinetic energy or temperature. Thus,


     (2-4)


where NA is Avogadro’s number. From the definition of n, n/NA is the number of moles per unit volume and therefore, Eq. 2-4 is an expression of the perfect gas law.

Pressure is the most widely quoted system variable in vacuum technology and this fact has generated a large number of units that have been used to define it under various circumstances. Basically, two broad types of pressure units have arisen in practice. In what we shall call the scientific system or coherent unit system (Ref. 4), pressure is defined as the rate of change of the normal component of momentum of impinging molecules per unit area of surface. Thus, the pressure is defined as a force per unit area, and examples of these units are dynes/cm2 (CGS) or newtons/meter2 (N/m2) (MKS). Vacuum levels are now commonly reported in SI units or pascals; 1 pascal (Pa) = 1 N/m2. Historically, however, pressure was, and still is, measured by the height of a column of liquid, e.g., Hg or H2O. This has led to a set of what we shall call practical or noncoherent units, such as millimeters and microns of Hg, torr, and atmospheres, which are still widely employed by practitioners as well as by equipment manufacturers. Definitions of some units together with important conversions include







The mean distance traveled by molecules between successive collisions, called the mean-free path, λmfp, is an important property of the gas that is dependent on the pressure. To calculate λmfp we note that each molecule presents a target area πd2c to others where dc is its collision diameter. A binary collision occurs each time the center of one molecule approaches within a distance dc of the other. If we imagine the diameter of one molecule increased to 2dc while the other molecules are reduced to points, then in traveling a distance λmfp the former sweeps out a cylindrical volume πd2c λmfp. One collision will occur under the condition that πd2c λmfp n = 1. For air at room temperature and atmospheric pressure, λmfp ∼ 500 Å, assuming dc 5 Å.

A molecule collides in a time given by λmfp/ν, and under the above conditions, air molecules make about 1010 collisions per second. This is why gases mix together rather slowly even though the individual molecules are moving at great speeds. The gas particles do not travel in uninterrupted linear trajectories. As a result of collisions, they are continually knocked to and fro, executing a zigzag motion and accomplishing little net movement. Since n is directly proportional to P, a simple relation for ambient air is


     (2-5)


with λmfp given in centimeters and P in torr. At pressures below 10−3 torr, λmfp is so large that molecules effectively collide only with the walls of the vacuum chamber.

2.2.3 GAS IMPINGEMENT ON SURFACES


A most important quantity that plays a role in both vacuum science and vapor deposition is the gas impingement flux Φ. It is a measure of the frequency with which molecules impinge on or collide with a surface, and should be distinguished from the previously discussed molecular collisions in the gas phase. The number of molecules that strike an element of...

Erscheint lt. Verlag 20.10.2001
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-049178-2 / 0080491782
ISBN-13 978-0-08-049178-3 / 9780080491783
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 15,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 26,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische …

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
Walter de Gruyter GmbH & Co.KG (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99