Molecular Biology of Neurological Disease -

Molecular Biology of Neurological Disease (eBook)

Butterworths International Medical Reviews
eBook Download: PDF | EPUB
2013 | 1. Auflage
276 Seiten
Elsevier Science (Verlag)
978-1-4831-6330-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Molecular Biology of Neurological Disease
The Molecular Biology of Neurological Disease reviews advances that have been made in understanding the molecular mechanisms of neurological disorders as well as immediate and future applications of molecular biological techniques to clinical practice. This book explores the molecular genetics of neurological disease such as muscular dystrophy, Joseph disease, and Huntington's disease, along with the mitochondrial genes implicated in such conditions. This text is comprised of 18 chapters and begins by introducing the reader to the basic principles and methods of molecular genetic techniques used in the diagnosis of neurological disease. Attention then turns to several aspects of genetic expression in the brain, including the extent to which the genome is expressed in the brain. The next chapter focuses on the visualization of polyadenylated messenger RNAs in individual cells in mammalian brain using in situ hybridization techniques, combined with immunohistochemical localization of specific proteins and neuropeptides implicated in diseases such as Alzheimer dementia. This book also discusses the molecular biology of chemical synaptic neurotransmission; proteins involved in the regulation of nervous system development; and gene expression in skeletal muscle. This text then concludes with a summary of the "e;"e;neurological gene map"e;"e; as it stands in the latter part of 1987. This book is intended for physicians who grapple with the problems of neurological disorders on a daily basis, including neurologists, neurologists in training, and those in related fields such as neurosurgery, internal medicine, psychiatry, and rehabilitation medicine.

Front Cover 1
The Molecular Biology of Neurological Disease 4
Copyright Page 5
Table of Contents 12
FOREWORD 6
PREFACE 8
CONTRIBUTORS 10
CHAPTER 1. Molecular Genetics and Neurological Disease: Basic Principles and Methods 14
INTRODUCTION 14
PRINCIPLES OF MENDELIAN INHERITANCE 14
STRUCTURE AND FUNCTION OF NUCLEIC ACIDS 16
THE MOLECULAR BASIS OF GENETIC VARIATION 18
GENE CLONING, GENE LIBRARIES, AND GENE PROBES 21
GENE MAPPING, GENE TRACKING AND NEUROLOGICAL DISEASE 23
WHAT NEXT AFTER GENETIC LINKAGE? 28
THE CLINICAL APPLICATION OF LINKED DNA MARKERS AND GENE SPECIFIC PROBES 29
GENE THERAPY 31
REFERENCES 32
CHAPTER 2. Genes expressed in the brain: evolutionary and developmental considerations 35
INTRODUCTION 35
THE COMPLEXITY OF GENE EXPRESSION IN THE BRAIN 35
GENE EXPRESSION AND POSTNATAL DEVELOPMENT OF THE BRAIN 40
RECOMBINANT DNA AND THE ISOLATION OF GENES SPECIFYING BRAIN PROTEINS 43
REFERENCES 44
CHAPTER 3. In situ hybridization: visualizing brain messenger RNA 48
INTRODUCTION 48
EXPRESSION OF GENES ENCODING BRAIN STRUCTURAL PROTEINS DURING DEVELOPMENT 48
REGULATION OF NEUROPEPTIDES RELATED TO CELL FUNCTION 49
ALZHEIMER DISEASE GENETICS 50
VIRUSES AND ALZHEIMER'S DISEASE 51
TECHNIQUES OF COMBINING IN SITU HYBRIDIZATION AND IMMUNOHISTOCHEMISTRY IN BRAIN TISSUE 51
CONCLUSIONS 52
ACKNOWLEDGEMENTS 53
REFERENCES 53
CHAPTER 4. Molecular biology of chemical neurotransmission 57
INTRODUCTION 57
NEUROTRANSMITTERS 57
NEUROTRANSMITTER RECEPTORS 62
NEUROPEPTIDE RECEPTORS 71
CONCLUSIONS 72
ACKNOWLEDGEMENTS 72
REFERENCES 72
CHAPTER 5. Proteins which regulate the development of the nervous system 76
INTRODUCTION 76
REGULATION OF CELL DIFFERENTIATION: NERVE GROWTH FACTOR 76
REGULATION OF CELL PROLIFERATION: PLATELET-DERIVED GROWTH FACTOR 78
REGULATION OF CELL–CELL ADHESION: NEURAL CELL ADHESION MOLECULE 81
REGULATION OF CELL–SUBSTRATUM ADHESION: LAMININ 83
REFERENCES 84
CHAPTER 6. Gene expression in skeletal muscle 95
INTRODUCTION 95
MOLECULAR CORRELATES OF MUSCLE DIFFERENTIATION 97
THE MYOFIBRILLAR PROTEINS 97
CONTROL OF MUSCLE GENE EXPRESSION 99
THE CELL SURFACE OF SKELETAL MUSCLE CELLS 102
REFERENCES 105
CHAPTER 7. Host and viral genetic factors which influence viral neurotropism 107
INTRODUCTION 107
HOST FACTORS INFLUENCING SUSCEPTIBILITY TO VIRAL INFECTION 107
VIRAL FACTORS 110
CONCLUSIONS 118
ACKNOWLEDGEMENTS 118
REFERENCES 118
CHAPTER 8. Neuro-oncogenesis: recessive genes, activated oncogenes, and chromosome abnormalities in the development of neuroectodermal cancers 122
INTRODUCTION 122
ONCOGENES 122
CHROMOSOMES AND CANCER 129
RECESSIVE GENES AND CANCER 129
SOMATIC CELL HYBRIDS, TRANSFECTION, AND TRANSGENIC MICE 130
TUMOUR REGRESSION, MATURATION, AND PROGRESSION 132
NEURO-ONCOGENESIS 133
CONCLUSIONS 135
REFERENCES 135
CHAPTER 9. Transgenic mice and neurological disease 138
INTRODUCTION 138
METHODS OF GENE TRANSFER INTO ANIMALS AND GENERAL CONSIDERATIONS ABOUT EXPRESSION 138
EXPRESSION OF VIRAL GENES WITH PATHOLOGICAL EFFECTS IN THE NERVOUS SYSTEM 140
EXPRESSION OF GENES NORMALLY ACTIVE IN THE NERVOUS SYSTEM OR SKELETAL MUSCLE 142
ECTOPIC EXPRESSION IN THE NERVOUS SYSTEM 142
INSERTIONAL MUT AGENESIS 143
CORRECTION OF GENETIC DEFECTS 143
TRANSGENIC MICE AS BIOASSAYS FOR EFFECTS OF DEFECTIVE GENES 144
REFERENCES 145
CHAPTER 10. Messenger RNA levels in neurological disease 148
INTRODUCTION 148
MESSENGER RNA ANALYSIS IN POSTMORTEM BRAIN 148
MESSENGER RNA LEVELS IN ALZHEIMER'S DISEASE 154
ACKNOWLEDGEMENTS 160
REFERENCES 160
CHAPTER 11. Molecular genetics of Joseph disease 166
AETIOLOGY OF JOSEPH DISEASE 166
AZOREAN NEUROEPIDEMIOLOGY 167
MOLECULAR GENETICS OF JOSEPH DISEASE 168
CONCLUSIONS 172
REFERENCES 174
CHAPTER 12. Huntington's disease 176
INTRODUCTION 176
DESCRIPTION OF THE DISEASE 176
THE MOLECULAR GENETIC APPROACH TO HUNTINGTON'S DISEASE 182
REFERENCES 192
CHAPTER 13. Molecular genetics and muscular dystrophy 196
INTRODUCTION 196
DUCHENNE AND BECKER MUSCULAR DYSTROPHIES 197
OTHER MUSCULAR DYSTROPHIES 206
CONCLUSIONS 208
REFERENCES 208
CHAPTER 14. Mitochondrial genes and neurological disease 212
ASPECTS OF MITOCHONDRIAL STRUCTURE AND FUNCTION 212
MITOCHONDRIAL GENETICS 214
References 221
CHAPTER 15. Molecular basis of retinoblastoma 224
INTRODUCTION 224
CHROMOSOMES IN RETINOBLASTOMA 225
ESTERASE D STUDIES 225
CONCLUSIONS 229
REFERENCES 229
CHAPTER 16. Detection of viral genes in neurological disease 232
INTRODUCTION 232
INTERACTION OF PERSISTENT VIRUS AND BRAIN 232
THE ROLE OF IMMUNOSUPPRESSION 233
EFFECTS OF PERSISTENT AND LATENT VIRUSES ON HOST CELL METABOLISM 235
DETECTION METHODS FOR VIRAL GENOME 235
VIRUSES OF SPECIAL INTEREST 237
DISEASES OF KNOWN VIRAL AETIOLOGY 240
SOME DISEASES OF POSSIBLE VIRAL AETIOLOGY 241
CONCLUSIONS 243
ACKNOWLEDGEMENTS 244
REFERENCES 244
CHAPTER 17. Immunogenetics: genetic polymorphism and susceptibility to neurological disease 247
INTRODUCTION 247
GENETICS OF IMMUNE RESPONSE 247
HLA AND DISEASE 250
MULTIPLE SCLEROSIS 251
MYASTHENIA GRAVIS 256
LAMBERT-EATON MYASTHENIC SYNDROME 258
THE NARCOLEPTIC SYNDROME 258
CONCLUSIONS 259
REFERENCES 260
CHAPTER 18. A neurological gene map 263
INTRODUCTION 263
REFERENCES 266
INDEX 268

2

Genes expressed in the brain: evolutionary and developmental considerations


William E. Hahn and Gregory P. Owens

Publisher Summary


This chapter focuses on evolutionary and developmental considerations on genes expressed in the brain. It is evident from measurements of the sequence complexity of messenger RNA (mRNA) that a substantial portion of genetic information in mammals and invertebrate animals is apparently required for development and function of the brain. Many of the genes expressed in the brain are expressed in a variety of other organs, but quantitative differences in expression of many of these shared genes are evident. In other words, the relative abundance of a given messenger RNA species can differ markedly among various tissues and organs. Of greater interest regarding functions unique to the brain are measurements that indicate the presence of a wide variety of putatively brain specific mRNAs. Presumably, these mRNAs encode for proteins that have presently evolved such that they are of specific adaptive value in the development and function of the brain. The chapter discusses several aspects of genetic expression in the brain. It describes the complexity of gene expression in the brain. The chapter also highlights recombinant DNA and the isolation of genes specifying brain proteins.

INTRODUCTION


In this chapter several aspects of genetic expression in the brain are discussed, mostly in broad interpretative terms rather than in factual and descriptive detail. The first of the more general topics we address is the extent to which the genome is expressed in the brain.

THE COMPLEXITY OF GENE EXPRESSION IN THE BRAIN


It is evident from measurements of the sequence complexity of messenger RNA (mRNA) that a substantial portion of genetic information in mammals, as well as invertebrate animals, is apparently required for development and function of the brain (Bantle and Hahn, 1976; Chikaraishi, 1979; Van Ness, Maxwell and Hahn, 1979; Kaplan, 1986; Hahn et al., 1986). Many of the genes expressed in the brain are expressed in a variety of other organs (Hahn and Chaudhari, 1984) but quantitative differences in expression of many of these ‘shared’ genes are evident (Milner and Sutcliffe, 1983). In other words, the relative abundance of a given messenger RNA species can differ markedly among various tissues and organs.

Of greater interest regarding functions unique to the brain are measurements that indicate the presence of a wide variety of putatively brain specific mRNAs (Milner and Sutcliffe, 1983; Hahn and Chaudhari, 1984). Presumably these mRNAs encode for proteins that have presently evolved such that they are of specific adaptive value in the development and function of the brain. The suggestion that the expression of many genes might be restricted to the brain first came from comparative measurements on the sequence complexity of nuclear RNAs obtained from various mammalian organs (Hahn and Laird, 1971; Grouse, Chilton and McCarthy, 1972). While these initial measurements were underestimates of the linear sequence complexity of the RNA in question, they nonetheless showed that more of the genome is expressed in brain than in other complex organs such as the liver and kidney. Subsequent investigations showed that the greater sequence complexity of brain nuclear RNA was also reflected in the diversity of the mRNA population (Bantle and Hahn, 1976). The complexity of polysomal RNA from mouse and rat brain, as measured by saturation hybridization of single copy genomic DNA, is in the range of 2.3–2.9 × 108 nucleotides, of which 1.1–1.8 × 108 nucleotides are attributable to the polyadenylated fraction (Van Ness, Maxwell and Hahn, 1979; Chikaraishi, 1979). These values are regarded as estimates, as the determination of sequence complexity, either from saturation hybridization of single copy genomic sequences or from hybridization kinetics of copy DNA (cDNA) transcribed from mRNA, is not precise (Van Ness and Hahn, 1980; 1982). However, certain refinements in technique and the fact that there is fair consistency between different investigators strengthens the conclusion that these complexity values are fairly reliable estimates (Kaplan, 1986).

Conversion of the linear sequence complexity of RNA into the number of different mRNA species is an uncertain step owing to the fact that mRNAs are highly heterogeneous in length. The average size of messenger RNA as determined by electrophoretic mobility and sedimentation in density gradients is around 1500–2000 nucleotides (Bantle and Hahn, 1976; Meyuhas and Perry, 1979). Most of the sequence complexity is contained in the fraction of mRNA that comprises the rare or infrequent copy class, and these species make up less than half of the mass of total mRNA (Young, Birnie and Paul, 1976; Hahn, Van Ness and Chaudhari, 1982). Some experiments with cDNA probes indicate that less abundant mRNAs are on average longer than abundant species (Meyuhas and Perry, 1979; Milner and Sutcliffe, 1983); mRNAs of 500 to nearly 10000 nucleotides have been observed in the brain (Rutishauser and Goridis, 1986; Adelman et al., 1987; Owens and Hahn, unpublished data). It is also possible that a wide variety of the mRNA species that are restricted to the brain may, on average, be larger than mRNAs found in other organs. Perhaps many of the genes necessary for brain development and behaviour capabilities encode large polyproteins (Sutcliffe and Milner, 1983). Whatever the case, the number of individual messenger species can be roughly estimated by dividing the total sequence complexity of polysomal RNA by the number of nucleotides in mRNA molecules of average size. Assuming an average size of around 5000 nucleotides for mRNA molecules the number of species is around 50000 for total polysomal RNA and about 30000 for the polyadenylated fraction of polysomal RNA (Hahn and Chaudhari, 1984; Milner, 1986). Additional molecular variety can result from heterogeneity of certain mRNAs in which the same basic coding sequence is present but different 5’ untranslated sequence and use of alternative polyadenylation signals result in a polymorphic family of mRNAs specified by the same gene (Sutcliffe, McKinnon and Tsau, 1986).

The correspondence between linear sequence complexity of mRNA and proteins is conjectural. In many instances the protein coding region of mRNA molecules has been found to be considerably shorter than the 3’ untranslated sequence (Kuwano et al., 1984; Milner et al., 1985). The 3’ untranslated region may be specified by both single copy as well as repetitious sequences in the genome, and thus comprise a considerable portion of the total sequence complexity. Hence the complexity of the code sequence of brain mRNA is unclear. This aspect would not decrease the predicted number of proteins as based upon an estimated number of different mRNAs, but would simply reduce the average size (linear amino acid sequence complexity) of the protein molecules.

It should be noted that the number of protein species detectable by two-dimensional electrophoresis in cultured neural cells is much less than predicted on the basis of the complexity of the mRNA populations (Schubert, Brass and Dumas, 1986). Other points to consider for perspective on the mRNA population in relationship to the predicted number of protein species include differential processing of primary transcripts and alternate pathways of post-translational processing of proteins. These processes increase the diversity of functional peptides and polypeptides beyond that suggested simply from linear sequence complexity of mRNAs (Rosenfeld, Amara and Evans, 1984; see below).

The approximate number of gene products that are restricted to brain is not clearly established, although hybridization experiments with poly(A)+ mRNA from other complex organs suggest half or more are specific to the brain (Hahn, Van Ness and Chaudhari, 1982; Milner and Sutcliffe, 1983). Numerous unidentified cloned cDNAs have been shown to represent mRNA that can be detected in the brain but not in other organs by RNA blot assays (Milner and Sutcliffe, 1983; Hahn and Chaudhari, 1984). High resolution hybridization assays substantiate the presence of brain restricted mRNAs (Hahn et al., 1986). The frequency and apparent ease of identifying clones in brain cDNA libraries corresponding to brain restricted mRNAs, and experiments with fractionated cDNA probes, point to the probable existence of a wide array of proteins restricted to the brain. Presumably many of these proteins function in specific developmental and physiological processes that are unique to this organ.

To what extent the sequence complexity of polysomal RNA represents the inherent complexity of neurons and glial cells as opposed to differential distribution of mRNAs within a diverse population of cells in the brain is unclear (Kaplan and Finch, 1982; Takahashi, 1984). Some mRNAs apparently have restricted cellular distribution as reflected at the protein level, for example as shown by antibody probes in the visual cortex (Arimatsu, Naegele and Barnstaple, 1987). A number of mRNAs encoding regulatory polypeptides appear to be restricted to certain hypothalamic neurons (Mason...

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Sachbuch/Ratgeber Gesundheit / Leben / Psychologie Krankheiten / Heilverfahren
Medizin / Pharmazie
Naturwissenschaften Biologie Humanbiologie
Naturwissenschaften Biologie Zoologie
ISBN-10 1-4831-6330-X / 148316330X
ISBN-13 978-1-4831-6330-7 / 9781483163307
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 43,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 3,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Diagnostik - Epidemiologie - Therapie

von Sebastian Schulz-Stübner; Markus Dettenkofer …

eBook Download (2023)
Springer-Verlag
46,99
Erste Anzeichen erkennen. Die Fülle der Therapien nutzen. Dauerhaft …

von Ulrich Hegerl; Svenja Niescken

eBook Download (2022)
Trias (Verlag)
19,99