Advances in Imaging and Electron Physics -  Henning Harmuth,  Beate Meffert

Advances in Imaging and Electron Physics (eBook)

Dogma of the Continuum and the Calculus of Finite Differences in Quantum Physics
eBook Download: PDF | EPUB
2005 | 1. Auflage
352 Seiten
Elsevier Science (Verlag)
978-0-08-052624-9 (ISBN)
200,00 € inkl. MwSt
Systemvoraussetzungen
199,75 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

Cover 1
Contents 6
Preface 10
Future Contributions 12
Dedication 18
Foreword 20
List of Frequently Used Symbols 24
Chapter 1. Introduction 28
1.1 Modified Maxwell Equations and Basic Relations 28
1.2 Basic Concepts of the Calculus of Finite Differences 35
1.3 Lagrange Function and Modified Maxwell Equations 45
1.4 Dogma of the Continuum in Physics 53
1.5 Concept of Space Based on Finite Differences 57
Chapter 2. Modified Klein-Gordon Equation 71
2.1 Differential Equation with Magnetic Current Density 71
2.2 Modified Klein-Gordon Difference Equation 79
2.3 Solution of the Difference Equation of .x0 88
2.4 Time-Dependent Solution of .x0(., .) 97
2.5 Hamilton Function and Quantization 105
2.6 Plots for First-Order Approximation 113
Chapter 3. Inhomogeneous Difference Equation 119
3.1 Inhomogeneous Term of Eq. (2.2-31) 119
3.2 Evaluation of Eq. (3.1-32) 129
3.3 Quantization of the Solution for .x > >
3.4 Evaluation of the Energy Ûc 149
3.5 Plots for Second-Order Approximation 162
Chapter 4. Klein-Gordon Difference Equation for Small Distances 170
4.1 Evaluation of the Difference Equation for .x < <
4.2 Evaluation of Eq. (4.1-4) 174
4.3 Quantization of the Solution for .x < <
4.4 Evaluation of the Energy Ûc for Small Distances 190
Chapter 5. Difference Equation in Spherical Coordinates 210
5.1 Charged Particle in an Electromagnetic (EM) Field 210
5.2 Relativistic Mass Variation 216
5.3 Quantization with Differential Operators 225
5.4 Difference Operators 230
5.5 Spatial Difference Equation 238
5.6 Quantization of the Solution .r0(., .) 249
5.7 Convergence for Small Values of .r 253
5.8 Plots for Sections 5.5 and 5.7 257
5.9 Origin of the Coulomb Field 270
5.10 Unbounded Bosons in a Coulomb Field 271
5.11 Antiparticles 284
Chapter 6. Appendix 289
6.1 Difference Operators of Higher Order 289
6.2 Extension of Section 3.1 for .x < <
6.3 Solution of Inhomogeneous Difference Equations 295
6.4 Calculations for Section 4.2 305
6.5 Formulas for Spherical Coordinates 311
6.6 Difference Equations Solved by Polynomials 315
6.7 Discrete Spherical Harmonics 320
6.8 Solution of the Differential Equation (5.5-12) 325
6.9 Conformal Mapping for Section 5.7 327
6.10 Conformal Mapping for Section 5.10 338
References and Bibliography 341
Index 345

1

Introduction


Henning F. Harmuth    Retired, The Catholic University of America Washington, DC, USA

Beate Meffert    Humboldt-Universität Berlin, Germany

1.1 MODIFIED MAXWELL EQUATIONS AND BASIC RELATIONS


During the last century an enormous number of books and journal articles has been published on solutions of Maxwell’s equations. Practically all of them were about sinusoidal waves. These solutions were outside the conservation law of energy, since periodic sinusoidal waves, infinitely extended, must have infinite energy unless their power is zero. We have found only two papers that used Gaussian pulses rather than periodic sinusoidal functions to keep the energy finite (King and Harrison 1968, King 1993). The Gaussian pulse still starts at minus infinity, which prevents its use as a signal. A signal has to be zero before a certain finite time. This need was recognized by mathematicians who coined the term causal functions for functions that are zero before a finite time. Since signals—like any producible or observable electromagnetic wave—must have a finite energy, they are mathematically represented by quadratically integrable causal functions or signal solutions.

The lack of signal solutions of Maxwell’s equations must always have been a problem for its serious students. The best equations of the theory of electromagnetism did generally not provide the only solutions that could be produced or observed experimentally. Stratton (1941) tried to overcome this problem but his mathematical derivations were not well received and we do not find them in the textbooks published later.

From 1986 on it was recognized that Maxwell’s equations could generally not have solutions that satisfied the causality law, which explained the absence of signal solutions (Harmuth 1986a,b,c; Hillion 1991, 1992a,b; 1993). The addition of a magnetic (dipole) current density term corrected this shortcoming1 (Harmuth 1986a,b,c; Anastasovski et al. 2001). Rotating magnetic dipoles produce magnetic dipole currents just as rotating electric dipoles—e.g, in a material like barium-titanate—produce electric dipole currents.

Maxwell’s equations modified by a magnetic dipole current density can be written in the following form with international units in a coordinate system at rest:

?H=∂D∂t+ge

  (1)

?E=∂B∂t+gm

  (2)

?D=ρe

  (3)

?B=0ordiv?B=ρm

  (4)

We use here an old-fashioned notation but the problem of Maxwell’s equations with the causality law was found with this notation. It may well be that the physical meaning of equations is easier to grasp with this old notation. The operators ∇ and will be used when mathematical compactness is more important than physical meaning. The symbols E and H stand for the electric and magnetic field strength, D and B for the electric and magnetic flux density, ge and gm for the electric and magnetic current density, ρe and ρm for the electric and a possible magnetic charge density. The existence of magnetic charges is not accepted as confirmed experimentally, but there are serious theoretical arguments for their existence. The magnetic dipole current density gm does not depend on the existence of magnetic charges. The existence of magnetic dipoles is not disputed and rotating dipoles create dipole currents. The electric current density ge has always stood for electric monopole current densities requiring charges, but also for electric dipole and higher order multipole current densities whose total charge is zero. Without dipole currents no electric current could flow through a capacitor whose dielectric is an insulator for electric monopole currents.

The use of the term signal solution should not mislead one to believe that the modified Maxwell equations are only of interest in low-energy effects typically associated with information transmission. The electromagnetic pulse of an atomic bomb explosion or the electromagnetic radiation produced by a supernova explosion fit the definition of a signal solution too. The electric and magnetic field strengths produced in these examples are generally not defined by Maxwell’s equation but they are defined by the modified Maxwell equations.

Equations (1) to (4) are augmented by constitutive equations that connect D with E, B with H, ge with E, and gm with H. In the simplest case this connection is provided by scalar constants called permittivity , permeability μ, electric conductivity σ, and magnetic conductivity s. The electric and magnetic conductivities may be monopole current conductivities as well as dipole or higher order multipole current conductivities:

=ϵE

  (5)

=μH

  (6)

e=σE

  (7)

m=sH

  (8)

In more complicated cases , μ, σ, and s may vary with location, time, and direction, which requires time-variable tensors for their representation. In still more complicated cases Eqs.(5) to (8) may be replaced by partial differential equations. For sinusoidal time variation of E, H, D, B, ge, and gm one may use functions of frequency (ω), μ(ω), σ(ω), and s(ω) but this takes one beyond the conservation law of energy and the causality law. The widespread use of (ω), μ(ω), and σ(ω) demonstrates our ability to derive useful results from wrong theories.

A number of basic relations derived from the modified Maxwell equations will be needed. They are listed here without derivation. References for their derivation are given.

The electric and magnetic field strength in Maxwell’s equations are related to a vector potential Am and a scalar potential ϕe:

=−∂Am∂t−grad?ϕe

  (9)

=cZ?curl?Am

  (10)

For the modified Maxwell equations we have to add a vector potential Ae and a scalar potential ϕm. Equations (9) and (10) are replaced by the following relations2:

=−Zc?curl?Ae−∂Am∂t−grad?ϕe

  (11)

=cZ?curl?Am−∂Ae∂t−grad?ϕm

  (12)

The vector potentials are not completely specified since Eqs.(11) and (12) define only curl Ae and curl Am. Two additional conditions can be chosen that we call the extended Lorentz convention:

?Am+1c2∂ϕe∂t=0

  (13)

?Ae+1c2∂ϕm∂t=0

  (14)

The potentials of Eq.(11) and (12) then satisfy the following inhomogeneous partial differential equations:

2Ae−1c2∂2Ae∂t2≡□Ae=−1Zcgm

  (15)

2Am−1c2∂Am∂t2≡?□Am=−Zcge

  (16)

2?ϕe−1c2∂2ϕe∂t2≡□ϕe=−Zcρe

  (17)

2?ϕm−1c2∂2ϕm∂t2≡□ϕm=−cZρm

  (18)

Particular solutions of these partial differential equations may be represented by integrals taken over the whole space. We note that the magnetic charge density ρm may be always zero, which implies ϕm =...

Erscheint lt. Verlag 12.12.2005
Mitarbeit Herausgeber (Serie): Peter W. Hawkes
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Informatik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-052624-1 / 0080526241
ISBN-13 978-0-08-052624-9 / 9780080526249
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99