Modern Component Families and Circuit Block Design -  Nihal Kularatna

Modern Component Families and Circuit Block Design (eBook)

eBook Download: PDF | EPUB
2000 | 1. Auflage
384 Seiten
Elsevier Science (Verlag)
978-0-08-051196-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
76,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Kularatna's new book describes modern component families and how to design circuit blocks using them. While much of this information may be available elsewhere, in Modern Component Families and Circuit Block Design it is integrated with additional design hints that are unique. The discussion covers most components necessary in an embedded design or a DSP-based real time system design. The chapter on modern semi-conductor sensors allows system designers to use the latest sensor ICs for real-world physical parameter sensing.

*Covers the most recent low-power components

*Written by an authority on power electronics

*Includes extensive illustrations and references
Kularatna's new book describes modern component families and how to design circuit blocks using them. While much of this information may be available elsewhere, in Modern Component Families and Circuit Block Design it is integrated with additional design hints that are unique. The discussion covers most components necessary in an embedded design or a DSP-based real time system design. The chapter on modern semi-conductor sensors allows system designers to use the latest sensor ICs for real-world physical parameter sensing.*Covers the most recent low-power components*Written by an authority on power electronics*Includes extensive illustrations and references

Front Cover 1
Modern Component Families and Circuit Block Design 4
Copyright Page 5
Contents 8
Preface 14
Acknowledgments 16
Chapter 1. Voltage References and Voltage Regulators 20
1.1 Introduction 20
1.2 Voltage References 21
1.3 Linear Regulators 29
1.4 Switching Regulators 34
References 62
Chapter 2. Operational Amplifiers 66
2.1 Introduction 66
2.2 Introduction to Amplifiers 67
2.3 Basic Operational Amplifier 69
2.4 Different Types of Operational Amplifiers and Application Considerations 80
References 104
Chapter 3. Data Converters 106
3.1 Introduction 106
3.2 Sampled Data Systems 107
3.3 A/D Converter Errors 117
3.4 Effects of Sample and Hold Circuits 121
3.5 SHA Architectures 129
3.6 ADC Architectures 132
3.7 D/A Converters 153
3.8 Data Acquisition System Interfaces 164
References 168
Chapter 4. Microprocessors and Microcontrollers 170
4.1 Introduction 170
4.2 What is a System 170
4.3 Central Control 171
4.4 Stored Program Control 177
4.5 Inside the Microelectronic Central Controller 177
4.6 Microprocessor Architecture 181
4.7 Using Assembly Language 187
4.8 Single-Chip Microcontrollers and Embedded Processor Core Applications 203
4.9 RISC vs. CISC Microprocessor Architecture 210
References 214
Chapter 5. Digital Signal Processors 216
5.1 Introduction 216
5.2 What Is a DSP? 217
5.3 Comparison Between a Microprocessor and a DSP 218
5.4 Filtering Applications and the Evolution of DSP Architecture 221
5.5 Special Addressing Modes 230
5.6 Important Architectural Elements in a DSP 234
5.7 Instruction Set 244
5.8 Development Systems 250
5.9 Interface Between DSPs and Data Converters 252
5.10 Practical Components and Recent Developments 257
References 258
Chapter 6. Optoisolators 260
6.1 Introduction 260
6.2 Light-Emitting Diodes and Photosensors 260
6.3 Optoisolators 262
6.4 Practical Circuits 265
6.5 Driving High-Level Loads with Optocouplers 270
6.6 Photovoltaic Devices 279
6.7 Conclusion 283
References 283
Chapter 7. Sensors 284
7.1 Introduction 284
7.2 The Properties of Silicon and Their Effects on Sensors 285
7.3 Micromechanics 286
7.4 Temperature Sensors 286
7.5 Silicon Pressure Sensors 316
7.6 Silicon Accelerometers 334
7.7 Hall Effect Devices 343
7.8 Humidity and Chemical Sensors 345
7.9 IEEE-P1451 Standard for Smart Sensors and Actuators 349
7.10 P1451 & Practical Components
References 354
Chapter 8. Nonlinear Devices 358
8.1 Introduction 358
8.2 A Basic Semiconductor Physics-Based Approach to Analog Computation Circuits 360
8.3 Important Design Considerations in Nonlinear Devices 362
8.4 Logarithmic Converters 365
8.5 Multipliers and Dividers 373
8.6 RMS-to-DC Converters 378
8.7 Function Generators 381
8.8 Benistor, a Newly Introduced Device 383
References 386
Chapter 9. Rechargeable Batteries and Their Management 388
9.1 Introduction 388
9.2 Battery Terminology 388
9.3 Battery Technology: An Overview 392
9.4 Lead-Acid Batteries 393
9.5 Nickel-Cadmium Batteries 398
9.6 Nickel-Metal Hydride Batteries 402
9.7 Lithium-Ion Batteries 404
9.8 Reusable Alkaline Batteries 406
9.9 Zinc-Air Batteries 408
9.10 Battery Management 409
9.11 The System Management Bus, Smart Battery Data Specifications, and Related Standards 421
9.12 Semiconductor Components for Battery Management 424
References 428
Chapter 10. Programmable Logic Devices 432
10.1 Introduction 432
10.2 Basic Concepts 433
10.3 Advantages of Programmable Logic 443
10.4 Designing with PLDs 443
10.5 Design Tools for PLDs 444
10.6 A Design Example 449
10.7 High-Density PLDs 458
References 460
Index 462

Chapter 1

Voltage References and Voltage Regulators


Dileeka Dia

1.1 Introduction


Almost all electronic systems utilize a regulated power supply as an essential requirement. Most systems need a precision voltage reference as well. In the past, the task of voltage regulation was tediously accomplished with discrete devices. Today, with integrated circuit voltage references and regulators, this task has been significantly simplified. Not only can an extremely high precision be obtained, but also an extremely high degree of temperature stability.

The performance of today’s electronic devices such as microprocessors, test and measuring instruments, and sophisticated portable and handheld equipment is directly related to the quality of the supply voltage. This results in the need for tight regulation, low noise, and excellent transient response. The designer now has a wide choice of fixed, adjustable, and tracking voltage regulators, with many also incorporating built-in protection features.

One of the fastest growing markets in the world of power regulation is for switching regulators. These offer designers several important advantages over linear regulators, the most significant being size and efficiency. In addition, the ability to perform step-up, step-down, or voltage inverting functions is an attractive feature.

The old linear regulator is not totally out of business. The proliferation of battery-powered equipment in recent years has accelerated the development and usage of low-dropout (LDO) voltage regulators. Compared to a standard linear regulator, the LDO regulator using PNP transistors can maintain its output in regulation with a much lower voltage across it. While the NPN transistor requires about 2 V of headroom voltage to regulate, the LDO typically will work with less than 500 mV of input-to-output voltage differential. This reduced input voltage requirement is advantageous in battery-powered systems, since it translates directly into fewer battery cells (Simpson, 1996). In low-dropout applications, the efficiency advantage of switching regulators no longer is as great. A linear regulator design on the other hand offers several desirable features, such as low output noise and wide bandwidth, resulting in excellent transient response.

This chapter describes the basics of voltage references, linear and switching regulators, and continues to discuss the state-of-the-art components available, the advantages and disadvantages of different types of devices, their application environments as well as the basics of regulator design using these components.

1.2 Voltage References


1.2.1 Voltage Reference Fundamentals


A wide variety of voltage references are available today. However, all base their performance on the action of either a zener diode or a bandgap cell. Additional circuitry is included to obtain good temperature stability. Although discrete zener diodes are available in voltage ratings as low as 1.8 V to as high as 200 V, with power handling capabilities in excess of 100 W, their tolerance and temperature characteristics are unsuitable for many applications. Therefore, discrete zener diode-based references have additional circuitry to improve performance. The most popular reference is probably the temperature-compensated zener diode, particularly, for voltages above 5 V.

The operation of a bandgap reference is based on specific characteristics of diodes operating at the same current but different current densities. Bandgap references are available with output voltage ratings of about 1.2 to 10 V. The principal advantage of these devices is their ability to provide stable low voltages, such as 1.2, 2.5, or 5 V. However, bandgap references of 5 V and higher tend to have more noise than equivalent zener-based references. This is because, in bandgap references, higher voltages are obtained by amplification of the 1.2 V bandgap voltage by an internal amplifier. Their temperature stability also is below that of zener-based references.

1.2.2 Types of Voltage References


1.2.2.1 Zener-Based Voltage References

Zener diodes are semiconductor PN junction diodes with controlled reverse-bias properties, which make them extremely useful as voltage references. The V-I characteristics of an ideal zener diode is shown in Figure 1–1 (a) and a simple regulator circuit based on it in Figure 1-1 (b).

Figure 1-1 Zener diode and voltage regulator (a) Typical zener characteristics (b) a simple zener diode voltage regulator

The reverse characteristics show that, at the breakdown point, the knee voltage is independent of the diode current. This knee voltage or the zener voltage is controlled by the amount of doping applied in the manufacturing process. In the simple regulator circuit shown in Figure 1–1 (b), as long as the zener diode is in its regulating range, the load voltage VL remains constant and equal to the nominal zener voltage, even when the input voltage and the load resistance varies over a wide range. If the input voltage increases, the diode maintains a constant voltage across the load by absorbing the extra current and keeping the load current constant. If the load resistance decreases, the extra current required to keep the load voltage constant is facilitated by a decrease in the current drawn by the zener diode.

In the preceding simplified analysis, the temperature dependence of the zener voltage was not taken into account. The stability of the output with temperature is a prime requirement of a voltage reference. Not only does the zener voltage vary with temperature, its variation also depends on the type of breakdown that occurs.

A zener diode has two distinctly different breakdown mechanisms: zener breakdown and avalanche breakdown. The zener breakdown voltage decreases as the temperature increases, creating a negative temperature coefficient (TC). The avalanche breakdown voltage increases with temperature (positive TC) (Pryce, 1990). This is illustrated in Figure 1–2. The zener effect and the avalanche effect dominate at low and high currents, respectively.

Figure 1-2 Temperature characteristics of zener diodes: (a) Zener breakdown, (b) Avalanche breakdown

Although, theoretically, it is possible to select the operating point of a zener diode so that the two temperature coefficients will cancel out each other, in practical IC zener-based voltage references, a conventional forward-biased diode is used in series with a zener operating in the avalanche mode. A forward-biased diode has a negative TC, and this cancels the positive TC of the zener diode.

A simple zener-based voltage reference IC is shown in Figure 1–3. In this circuit, R4 provides the startup current for the diodes, thus setting the positive input of the op amp at V2. R3 sets the desired bias current for the diodes. Manufacturers set the output voltage to a value different from that of V2 through the ratio R1 to R2. By trimming this resistor ratio, the output voltage can be set to the desired accuracy. Also, by trimming R3, the bias current can be optimized to a point where a minimum TC is obtained.

Figure 1-3 A simple zener-based voltage reference IC

TC specifications as low as 1 ppm/°C are possible with zener-based voltage reference ICs (Pryce, 1990).

1.2.2.2 Bandgap References

Similar to zener-based references, bandgap references also produce the sum of two voltages having opposite temperature coefficients. One voltage is the forward voltage of a conventional diode (the base-emitter junction of a transistor), which has a negative temperature coefficient. The other is the difference between the forward voltages of two diodes with the same current but operating at two current densities. A circuit diagram of a bandgap reference is shown in Figure 1–4.

Figure 1-4 The circuit diagram of a bandgap reference

Transistors Q1 and Q2 are operating at the same current, but at different current densities. This is achieved by fabricating Q2 with a larger emitter area than Ql. Therefore, the base-emitter voltages of the two transistors are different. This difference is dropped across R2.

Extrapolated to absolute 0, VBE is equal to 1.205 V, the bandgap voltage of silicon, and has a predictable, negative temperature coefficient of –2 mV/°C. By adding a voltage to VBE, which has a positive temperature coefficient, a bandgap reference, at least theoretically, can generate a constant voltage at any temperature.

The base-emitter voltage difference is given by

VBE=kTqlnJ1J2

  (1.1)

Where J1 and J2 are the current densities of transistor Q1 and Q2, respectively. Since the sum of the two transistor currents flow through R1, the voltage across R1 can be expressed as

1=2R1R2ΔVBE

  (1.2)

Also,

2=VBE+V1

  (1.3)

Usinig 1.2 and 1.3,

2=VBE+2R1R2ΔVBE

  (1.4)

Therefore, V2 is the sum of VBE and the scaled ∆VBE Knapp (1998) shows that, if the emitter areas of the two transistors is eight, the temperature coefficients of VBE and ∆VBE...

Erscheint lt. Verlag 16.3.2000
Sprache englisch
Themenwelt Kunst / Musik / Theater Design / Innenarchitektur / Mode
Technik Elektrotechnik / Energietechnik
ISBN-10 0-08-051196-1 / 0080511961
ISBN-13 978-0-08-051196-2 / 9780080511962
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Adobe DRM)
Größe: 19,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 13,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Die Geschichte der Welt in Büchern

von Irene Vallejo

eBook Download (2022)
Diogenes (Verlag)
24,99